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interaction between light-quarks and distribution of hadron’s

characterising properties amongst its QCD constituents.

Dynamical Chiral Symmetry Breaking (DCSB) is most

important mass generating mechanism for visible matter in the

Universe. Higgs mechanism is irrelevant to light-quarks.

Running of quark mass entails that calculations at even

modest Q2 require a Poincaré-covariant approach. Covariance

requires existence of quark orbital angular momentum in

hadron’s rest-frame wave function.
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Spectrum of excited states, and elastic and transition form

factors provide unique information about long-range

interaction between light-quarks and distribution of hadron’s

characterising properties amongst its QCD constituents.

Dynamical Chiral Symmetry Breaking (DCSB) is most

important mass generating mechanism for visible matter in the

Universe. Higgs mechanism is irrelevant to light-quarks.

Challenge: understand relationship between parton properties

on the light-front and rest frame structure of hadrons. Problem

because, e.g., DCSB - an established keystone of low-energy

QCD and the origin of constituent-quark masses - has not

been realised in the light-front formulation.
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QCD’s Challenges
Understand Emergent Phenomena

Quark and Gluon Confinement

No matter how hard one strikes the proton, one

cannot liberate an individual quark or gluon

Dynamical Chiral Symmetry Breaking

Very unnatural pattern of bound state masses

e.g., Lagrangian (pQCD) quark mass is small but . . .

no degeneracy between JP=+ and JP=−

Neither of these phenomena is apparent in QCD’s

Lagrangian yet they are the dominant determining

characteristics of real-world QCD.

QCD – Complex behaviour

arises from apparently simple rules
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Confinement

Infinitely Heavy Quarks . . . Picture in Quantum Mechanics

integration of the force-3 loops

bosonic string

V (r) = σ r −
π

12

1

r

√
σ ∼ 470 MeV

Necco & Sommer

he-la/0108008
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Confinement

Illustrate this in terms of the action density . . . analogous to

plotting the Force = FQ̄Q(r) = σ +
π

12

1

r2

Bali, et al.
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Bali, et al.

he-la/0512018
“The breaking of the string appears to be an instantaneous

process, with de-localized light quark pair creation.”

Energy stored in string at instant before disappearance:
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Confinement
Therefore . . . No information on
potential between light-quarks.
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What is the light-quark
Long-Range Potential?

Potential between static (infinitely heavy) quarks
measured in simulations of lattice-QCD is not related
in any simple way to the light-quark interaction.Craig Roberts: Nucleon observables via a Faddeev equation
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⇒ Understanding InfraRed (long-range)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . behaviour of αs(Q
2)
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Hadrons as Composites of Quarks and Gluons

Qualitative and Quantitative Importance of:

· Dynamical Chiral Symmetry Breaking

– Generation of fermion mass from nothing

· Quark & Gluon Confinement

– Coloured objects not detected, not detectable?

Method yields Schwinger Functions ≡ Propagators
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Qualitative and Quantitative Importance of:

· Dynamical Chiral Symmetry Breaking

– Generation of fermion mass from nothing

· Quark & Gluon Confinement

– Coloured objects not detected, not detectable?

Cross-Sections built from Schwinger Functions
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Schwinger Functions

Solutions are Schwinger Functions
(Euclidean Green Functions)

Not all are Schwinger functions are experimentally
observable but . . .

all are same VEVs measured in numerical
simulations of lattice-regularised QCD
opportunity for comparisons at
pre-experimental level . . . cross-fertilisation

Proving fruitful.
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Confinement can be related to the analytic properties of

QCD’s Schwinger functions

Question of light-quark confinement can be translated into

the challenge of charting the infrared behavior of QCD’s

universal β-function

This function may depend on the scheme chosen to

renormalise the quantum field theory but it is unique

within a given scheme.

Of course, the behaviour of the β-function on the

perturbative domain is well known.

This is a well-posed problem whose solution is an elemental

goal of modern hadron physics.
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Through DSEs the pointwise behaviour of the β-function

determines pattern of chiral symmetry breaking

DSEs connect β-function to experimental observables.

Hence, comparison between computations and

observations of, e.g., hadron mass spectrum can be used to

chart β-function’s long-range behaviour

To realise this goal, a nonperturbative symmetry-preserving

DSE truncation is necessary

Steady quantitative progress is being made with a

scheme that is systematically improvable
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Charting the Interaction
between light-quarks

Through DSEs the pointwise behaviour of the β-function

determines pattern of chiral symmetry breaking

DSEs connect β-function to experimental observables.

Hence, comparison between computations and

observations of, e.g., hadron mass spectrum can be used to

chart β-function’s long-range behaviour

To realise this goal, a nonperturbative symmetry-preserving

DSE truncation is necessary

On other hand, at present significant qualitative

advances possible with symmetry-preserving kernel

Ansätze that express important additional

nonperturbative effects, difficult to capture in any finite

sum of contributions
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Frontiers of Nuclear Science:
A Long Range Plan (2007)
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Frontiers of Nuclear Science:
Theoretical Advances

Σ
=

D

γ
ΓS

Gap Equation
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Frontiers of Nuclear Science:
Theoretical Advances

Σ
=

D

γ
ΓS

Gap Equation

S(p) =
Z(p2)

iγ · p + M(p2)
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Mass from nothing.

In QCD a quark’s effective mass
depends on its momentum. The
function describing this can be
calculated and is depicted here.
Numerical simulations of lattice
QCD (data, at two different bare
masses) have confirmed model
predictions (solid curves) that the
vast bulk of the constituent mass
of a light quark comes from a
cloud of gluons that are dragged
along by the quark as it
propagates. In this way, a quark
that appears to be absolutely
massless at high energies
(m = 0, red curve) acquires a
large constituent mass at low
energies.
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Hadrons

• Established understanding of
two- and three-point functions

• What about bound states?
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Hadrons

• Without bound states, Comparison with
experiment is impossible

• They appear as pole contributions to n ≥ 3-point
colour-singlet Schwinger functions
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• Bethe-Salpeter Equation

QFT Generalisation of Lippmann-Schwinger Equation.
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Hadrons

• Without bound states, Comparison with
experiment is impossible

• Bethe-Salpeter Equation

QFT Generalisation of Lippmann-Schwinger Equation.

• What is the kernel, K?

or What is the long-range potential in QCD?
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Bethe-Salpeter Kernel

Axial-vector Ward-Takahashi identity

Pµ Γl
5µ(k;P ) = S−1(k+)

1

2
λl

f iγ5 +
1

2
λl

f iγ5 S−1(k−)

−Mζ iΓl
5(k;P ) − iΓl

5(k;P ) Mζ

QFT Statement of Chiral Symmetry
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Pµ Γl
5µ(k;P ) = S−1(k+)

1

2
λl

f iγ5 +
1

2
λl

f iγ5 S−1(k−)

−Mζ iΓl
5(k;P ) − iΓl

5(k;P ) Mζ

Satisfies BSE Satisfies DSE
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2
λl

f iγ5 S−1(k−)
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5(k;P ) − iΓl
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Satisfies BSE Satisfies DSE
Kernels very different
but must be intimately related
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Axial-vector Ward-Takahashi identity

Pµ Γl
5µ(k;P ) = S−1(k+)

1

2
λl

f iγ5 +
1

2
λl

f iγ5 S−1(k−)

−Mζ iΓl
5(k;P ) − iΓl

5(k;P ) Mζ

Satisfies BSE Satisfies DSE
Kernels very different
but must be intimately related

• Relation must be preserved by truncation
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Bethe-Salpeter Kernel

Axial-vector Ward-Takahashi identity

Pµ Γl
5µ(k;P ) = S−1(k+)

1

2
λl

f iγ5 +
1

2
λl

f iγ5 S−1(k−)

−Mζ iΓl
5(k;P ) − iΓl

5(k;P ) Mζ

Satisfies BSE Satisfies DSE
Kernels very different
but must be intimately related

• Relation must be preserved by truncation
• Nontrivial constraint
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Bethe-Salpeter Kernel

Axial-vector Ward-Takahashi identity

Pµ Γl
5µ(k;P ) = S−1(k+)

1

2
λl

f iγ5 +
1

2
λl

f iγ5 S−1(k−)

−Mζ iΓl
5(k;P ) − iΓl

5(k;P ) Mζ

Satisfies BSE Satisfies DSE
Kernels very different
but must be intimately related

• Relation must be preserved by truncation
• Failure ⇒ Explicit Violation of QCD’s Chiral Symmetry
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Σ
=

D

γ
ΓS
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Infinitely Many Coupled Equations

Σ
=

D

γ
ΓS

Coupling between equations necessitates truncation

Weak coupling expansion ⇒ Perturbation Theory

Craig Roberts: Nucleon observables via a Faddeev equation

Three-body dynamics in hadron structure and hadronic systems, 24 July 2009, JLab . . . 29 – p. 13/30



First Contents Back Conclusion

Persistent Challenge

Infinitely Many Coupled Equations

Σ
=

D

γ
ΓS

Coupling between equations necessitates truncation

Weak coupling expansion ⇒ Perturbation Theory
Not useful for the nonperturbative problems
in which we’re interested
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Persistent Challenge

Infinitely Many Coupled Equations

There is at least one systematic nonperturbative,
symmetry-preserving truncation scheme
H.J. Munczek Phys. Rev. D 52 (1995) 4736
Dynamical chiral symmetry breaking, Goldstone’s
theorem and the consistency of the Schwinger-Dyson
and Bethe-Salpeter Equations
A. Bender, C. D. Roberts and L. von Smekal, Phys.
Lett. B 380 (1996) 7
Goldstone Theorem and Diquark Confinement Beyond
Rainbow Ladder Approximation
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Persistent Challenge

Infinitely Many Coupled Equations

There is at least one systematic nonperturbative,
symmetry-preserving truncation scheme

Has Enabled Proof of EXACT Results in QCD

And Formulation of Practical Phenomenological Tool to

Illustrate Exact Results

Make Predictions with Readily Quantifiable Errors
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Gap Equation
General FormReturn to general bound-state problem . . .

To study the Poincaré covariant bound-state problem for

mesons, one must first solve the gap equation

Sf (p)−1 = Z2 (iγ · p + mbm
f ) + Σf (p) ,

Σf (p) = Z1

∫ Λ

q

g2Dµν(p − q)
λa

2
γµSf (q)

λa

2
Γf

ν (q, p),
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Gap Equation
General FormReturn to general bound-state problem . . .

To study the Poincaré covariant bound-state problem for

mesons, one must first solve the gap equation

Sf (p)−1 = Z2 (iγ · p + mbm
f ) + Σf (p) ,

Σf (p) = Z1

∫ Λ

q

g2Dµν(p − q)
λa

2
γµSf (q)

λa

2
Γf

ν (q, p),

Dµν(k) is the dressed-gluon propagator;

Γf
ν (q, p) is the dressed-quark-gluon vertex;

mbm(Λ) is the Lagrangian current-quark bare mass;

Z1,2(ζ
2,Λ2) are respectively the vertex and quark wave

function renormalisation constants, with ζ the

renormalisation point.
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Bethe-Salpeter Equation
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Pseudoscalar and axial-vector mesons appear as poles in

the inhomogeneous Bethe-Salpeter equation.
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Bethe-Salpeter Equation
General Form

Pseudoscalar and axial-vector mesons appear as poles in

the inhomogeneous Bethe-Salpeter equation.

Exact form:

Γfg
5µ(k;P ) = Z2γ5γµ −

∫

q

g2Dαβ(k − q)

×λa

2
γαSf (q+)Γfg

5µ(q;P )Sg(q−)
λa

2
Γg

β(q−, k−)

+

∫

q

g2Dαβ(k − q)
λa

2
γαSf (q+)

λa

2
Λfg

5µβ(k, q;P ),
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Bethe-Salpeter Equation
General Form

Pseudoscalar and axial-vector mesons appear as poles in

the inhomogeneous Bethe-Salpeter equation.

Exact form:

Γfg
5µ(k;P ) = Z2γ5γµ −

∫

q

g2Dαβ(k − q)

×λa

2
γαSf (q+)Γfg

5µ(q;P )Sg(q−)
λa

2
Γg

β(q−, k−)

+

∫

q

g2Dαβ(k − q)
λa

2
γαSf (q+)

λa

2
Λfg

5µβ(k, q;P ),

Λfg
5µβ is defined completely via the dressed-quark

self-energy and, owing to Poincaré covariance, one can

employ, e.g., q± = q±P/2, etc., without loss of generality
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Ward-Takahashi Identity
Bethe-Salpeter Kernel

In any reliable study of light-quark hadrons, axial-vector

vertex must satisfy

PµΓfg
5µ(k;P ) = S−1

f (k+)iγ5 + iγ5S
−1
g (k−)

− i [mf (ζ) + mg(ζ)] Γfg
5 (k;P ) ,

expresses chiral symmetry & pattern by which it’s broken
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Ward-Takahashi Identity
Bethe-Salpeter Kernel

In any reliable study of light-quark hadrons, axial-vector

vertex must satisfy

PµΓfg
5µ(k;P ) = S−1

f (k+)iγ5 + iγ5S
−1
g (k−)

− i [mf (ζ) + mg(ζ)] Γfg
5 (k;P ) ,

expresses chiral symmetry & pattern by which it’s broken

The condition (Λfg
5β pseudoscalar analogue of Λfg

5µβ)

PµΛfg
5µβ(k, q;P ) = Γf

β(q+, k+) iγ5 + iγ5 Γg
β(q−, k−)

− i[mf (ζ) + mg(ζ)]Λfg
5β(k, q;P ),

NECESSARY & SUFFICIENT

to ensure Ward-Takahashi identity satisfied.
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Ward-Takahashi Identity
Bethe-Salpeter Kernel

The condition (Λfg
5β pseudoscalar analogue of Λfg

5µβ)

PµΛfg
5µβ(k, q;P ) = Γf

β(q+, k+) iγ5 + iγ5 Γg
β(q−, k−)

− i[mf (ζ) + mg(ζ)]Λfg
5β(k, q;P ),

NECESSARY & SUFFICIENT

to ensure Ward-Takahashi identity satisfied.

Rainbow-ladder . . .

Γf
β(q, k) = γµ

⇒ Λfg
5µβ(k, q;P ) = 0 = Λfg

5β(k, q;P )
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Bethe-Salpeter Kernel
60 year problem

Bethe-Salpeter equation introduced in 1951

Ward-Takahashi identity

PµΛfg
5µβ(k, q;P ) = Γf

β(q+, k+) iγ5 + iγ5 Γg
β(q−, k−)

− i[mf (ζ) + mg(ζ)]Λfg
5β(k, q;P ),

Craig Roberts: Nucleon observables via a Faddeev equation

Three-body dynamics in hadron structure and hadronic systems, 24 July 2009, JLab . . . 29 – p. 18/30



First Contents Back Conclusion

Bethe-Salpeter Kernel
60 year problem

Chang Lei (IAPCM, Beijing) & CDR

arXiv:0903.5461 [nucl-th]

Bethe-Salpeter equation introduced in 1951

Ward-Takahashi identity

PµΛfg
5µβ(k, q;P ) = Γf

β(q+, k+) iγ5 + iγ5 Γg
β(q−, k−)

− i[mf (ζ) + mg(ζ)]Λfg
5β(k, q;P ),

For first time: can construct Ansatz for Bethe-Salpeter

kernel consistent with any reasonable quark-gluon vertex

Consistent means - all symmetries preserved!
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Bethe-Salpeter Kernel
60 year problem

Chang Lei (IAPCM, Beijing) & CDR

arXiv:0903.5461 [nucl-th]

Bethe-Salpeter equation introduced in 1951

Ward-Takahashi identity

PµΛfg
5µβ(k, q;P ) = Γf

β(q+, k+) iγ5 + iγ5 Γg
β(q−, k−)

− i[mf (ζ) + mg(ζ)]Λfg
5β(k, q;P ),

For first time: can construct Ansatz for Bethe-Salpeter

kernel consistent with any reasonable quark-gluon vertex

Exemplified the procedure and results to expect . . .
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Numerical
IllustrationChang Lei & CDR, arXiv:0903.5461 [nucl-th]
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Numerical
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Single interaction, common mass scale:

rainbow-ladder cf. BC-consistent truncation

GMOR . . . plainly satisfied by both truncations

Added attraction in pseudoscalar channel

Added repulsion in scalar channel
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Spin-orbit
InteractionChang Lei & CDR, arXiv:0903.5461 [nucl-th]

Rainbow-ladder DSE truncation,

εRL
σ :=

2M(0) − mσ

2M(0)

∣

∣

∣

∣

RL

= (0.3 ± 0.1) .

BC-consistent Bethe-Salpeter kernel; viz., εBC
σ . 0.1 .
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Rainbow-ladder DSE truncation,

εRL
σ :=

2M(0) − mσ

2M(0)

∣

∣

∣

∣

RL

= (0.3 ± 0.1) .

BC-consistent Bethe-Salpeter kernel; viz., εBC
σ . 0.1 .

Scalar mesons = 3P0 states: Constituents’ spins aligned

and one unit of constituent orbital angular momentum
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Spin-orbit
InteractionChang Lei & CDR, arXiv:0903.5461 [nucl-th]

Rainbow-ladder DSE truncation,

εRL
σ :=

2M(0) − mσ

2M(0)

∣

∣

∣

∣

RL

= (0.3 ± 0.1) .

BC-consistent Bethe-Salpeter kernel; viz., εBC
σ . 0.1 .

Scalar mesons = 3P0 states: Constituents’ spins aligned

and one unit of constituent orbital angular momentum

From this viewpoint scalar is a spin and orbital excitation of

a pseudoscalar meson
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Spin-orbit
InteractionChang Lei & CDR, arXiv:0903.5461 [nucl-th]

Rainbow-ladder DSE truncation,

εRL
σ :=

2M(0) − mσ

2M(0)

∣

∣

∣

∣

RL

= (0.3 ± 0.1) .

BC-consistent Bethe-Salpeter kernel; viz., εBC
σ . 0.1 .

Scalar mesons = 3P0 states: Constituents’ spins aligned

and one unit of constituent orbital angular momentum

Extant studies of realistic corrections to the rainbow-ladder

truncation show that they reduce hyperfine splitting
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Spin-orbit
InteractionChang Lei & CDR, arXiv:0903.5461 [nucl-th]

Rainbow-ladder DSE truncation,

εRL
σ :=

2M(0) − mσ

2M(0)

∣

∣

∣

∣

RL

= (0.3 ± 0.1) .

BC-consistent Bethe-Salpeter kernel; viz., εBC
σ . 0.1 .

Scalar mesons = 3P0 states: Constituents’ spins aligned

and one unit of constituent orbital angular momentum

Clear sign that in a Poincaré covariant treatment the

BC-consistent truncation magnifies spin-orbit splitting.

Effect owes to influence of quark’s dynamically-enhanced

scalar self-energy in the Bethe-Salpeter kernel.

Impossible to demonstrate effect without our new procedure
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σ . 0.1 .

Scalar mesons = 3P0 states: Constituents’ spins aligned

and one unit of constituent orbital angular momentum

Clear sign that in a Poincaré covariant treatment the

BC-consistent truncation magnifies spin-orbit splitting.

Expect this feature to have material impact on mesons with

mass greater than 1 GeV.

prima facie . . . can overcome longstanding shortcoming of

RL truncation; viz., splitting between vector & axial-vector

mesons is too small
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and one unit of constituent orbital angular momentum

Clear sign that in a Poincaré covariant treatment the

BC-consistent truncation magnifies spin-orbit splitting.

Expect this feature to have material impact on mesons with

mass greater than 1 GeV.

Promise of realistic meson spectroscopy

First time, also for mass > 1 GeV
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Bethe-Salpeter equation at spacelike total momentum

⇒ Γqq(k = 0, P 2)

1

Γqq(k = 0, P 2)
exhibits a zero at ground-state mass-squared

Padé approximant extrapolation to locate zero

Almost precisely method used for ground-state masses

in lattice-QCD

Intelligent use gives dependable results

“Schwinger functions and light-quark bound states”

S.V. Wright, et al., Few Body Syst. 40 (2007) 209,

nucl-th/0701009
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How does one incorporate dressed-quark mass function,

M(p2), in study of baryons? Behaviour of M(p2) is es-

sentially a quantum field theoretical effect.

In quantum field theory a nucleon appears as a pole in a six-

point quark Green function.

Residue is proportional to nucleon’s Faddeev amplitude

Poincaré covariant Faddeev equation sums all possible

exchanges and interactions that can take place between

three dressed-quarks

Tractable equation is founded on observation that an

interaction which describes colour-singlet mesons also

generates quark-quark (diquark) correlations in the

colour-3̄ (antitriplet) channel
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=
aΨ

P

p
q

p
d Γb
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p
d

p
q

bΨ
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q

Linear, Homogeneous Matrix equation

Yields wave function (Poincaré Covariant Faddeev

Amplitude) that describes quark-diquark relative motion

within the nucleon

Scalar and Axial-Vector Diquarks . . . In Nucleon’s Rest

Frame Amplitude has . . . s−, p− & d−wave correlations
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Diquark correlations

QUARK-QUARK

Same interaction that

describes mesons also

generates three coloured

quark-quark correlations:

blue–red, blue–green,

green–red

Confined . . . Does not

escape from within baryon.

Scalar is isosinglet,

Axial-vector is isotriplet

DSE and lattice-QCD

m[ud]
0+

= 0.74 − 0.82

m(uu)
1+

= m(ud)
1+

= m(dd)
1+

= 0.95 − 1.02
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EpilogueDCSB exists in QCD.

It is manifest in dressed propagators and

vertices

It predicts, amongst other things, that

light current-quarks become heavy

constituent-quarks: 4 → 400 MeV

pseudoscalar mesons are unnaturally

light: mρ = 770 cf. mπ = 140 MeV

pseudoscalar mesons couple unnaturally

strongly to light-quarks: gπq̄q ≈ 4.3

pseudscalar mesons couple unnaturally

strongly to the lightest baryons

gπN̄N ≈ 12.8 ≈ 3gπq̄q
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